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ABSTRACT: Metal−organic frameworks MIL-53(Al)-TDC and MIL-53(Al)-BDC were explored in the SO2 adsorption process.
MIL-53(Al)-TDC was shown to behave as a rigid-like material upon SO2 adsorption. On the other hand, MIL-53(Al)-BDC exhibits
guest-induced flexibility of the framework with the presence of multiple steps in the SO2 adsorption isotherm that was related
through molecular simulations to the existence of three different pore opening phases narrow pore, intermediate pore, and large
pore. Both materials proved to be exceptional candidates for SO2 capture, even under wet conditions, with excellent SO2 adsorption,
good cycling, chemical stability, and easy regeneration. Further, we propose MIL-53(Al)-TDC and MIL-53(A)-BDC of potential
interest for SO2 sensing and SO2 storage/transportation, respectively.
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1. INTRODUCTION
Air quality is nowadays a major concern in our modern society.
In 2018, the U.S. Environmental Protection Agency identified
and grouped six common air pollutants that can severely affect
human health: (1) carbon monoxide (CO), (2) sublimated
lead (Pb), (3) nitrogen oxides (NOx), (4) ozone (O3), (5)
particulate matter (PM10/2.5), and (6) sulfur oxides (SOx).

1

Particularly, SO2 is a colorless and hazardous gas with
suppressing odor that can trigger several respiratory issues,
for example, chronic bronchitis and laryngitis.2 In fact, the
World Health Organization fixed the SO2 exposure limit to
about 10 ppm over 10 min per day, and a concentration above
100 ppm could be lethal for humans.3 Lower SO2
concentrations (between 2 and 3 ppm) can also have a
devastating impact on our environment and vegetation. Even
though natural SO2 discharge occurs as a byproduct of volcanic
eruptions, to date, more than 80% of the SO2 released into the
atmosphere is produced by two main anthropogenic sources,
that is, stationary fuel combustion and industrial process.4

Therefore there is a crucial need to implement remediation
systems for substantially reducing SO2 concentration in air.
Over the past years, several techniques have been developed

for SO2 removal from industrial processes, for example, SO2

fixation as disulfitomercurate5,6 (a compound with high
toxicity in low amounts) and the flue gas desulfurization
(FGD) process. FGD consists of two main steps: the single-use
process and the recovery system. For the latter, the standard
sorbents are expensive scrubbers in alkaline medium, that is,
lime or limestone, sodium hydroxide, ammonium, and
seawater, among others.7,8 On top of that, only 10% of the
recovered SO2 can be used for other purposes such as
industrial conversion of SO2 to sulfuric acid.9,10 Another
alternative to remove SO2 from natural gas is the use of porous
solids such as zeolites, metal oxides, and activated
carbons.10−13 However, it was shown that this series of
adsorbents captures SO2 mostly through chemisorption,
implying high recovery costs due to the necessary high
temperatures or pressures and the use of long chemical
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treatments.14−16 Developing new SO2 sorbent materials with
high adsorption capacity, stability, and easy regeneration has
become a critical requirement.
Metal−organic frameworks (MOFs) or porous coordination

polymers are one of the most recent classes of crystalline
micro-/mesoporous materials formed by the assembly of metal
ions/metal oxide clusters and a series of organic linkers
(carboxylate, azolate, phenolate, etc.). Most of these MOFs are
chemically and thermally stable and have aroused tremendous
interests in diverse areas17 including gas separation,18−22 gas
storage,23−25 ion exchange,26−28 chemical sensing,29−32 drug
delivery,33−35 and catalysis,36−38 among others. More specif-
ically, a series of MOFs was demonstrated to be able to capture
corrosive and hazardous gases such as H2S and SO2; however,
some of them exhibit limited stability toward these
c o n t a m i n a n t s . 3 9 − 4 1 T y p i c a l l y ,
Ba0.5[Ni8(OH)3(EtO)3(BPD_NH2)5.5],

42 MIL-125(Ti)−
NH2,

43 and MOF-17744 show high SO2 adsorption capacities
(5.6, 7.9, and 25.7 mmol g−1, respectively) but suffer from
structural degradation upon exposure to this toxic gas. In
particular, the structural stability of MOFs in wet SO2
conditions [50−65% relative humidity (RH)] is a fundamental
concern.45 Some MOF materials such as MFM-202a,46 M-
MOF-74 (M = Zn(II) and Ni(II)),47,48 and MIL-125(Ti)−
NH2

43 exhibit high SO2 uptakes; however, the concomitant
presence of water was shown to play a detrimental role in their
stability and their SO2 uptake performance. Conversely, some
of us recently demonstrated a high chemical stability of MIL-
101(Cr)−4F(1%) upon wet SO2 adsorption.25,49 Several
Al(III)-based MOFs, for example, MIL-160,44 MFM-305,50

MFM-300(Al),51 and CAU-10,52 have equally shown high
stability to SO2 and good SO2 capture performances under
atmospheric conditions, that is, 7.2, 6.9, 8.1, and 4.5 mmol g−1,
respectively. Further, the last two materials51,52 have
demonstrated high cyclability (up to 50 adsorption−
desorption cycles) and structural stability under wet SO2.
MIL-53(Al)-BDC (BDC = 1,4 benzene dicarboxylate)53 is a

well-known flexible MOF material constructed by infinite
chains of trans-corner-sharing [AlO4(μ-OH)2] octahedral and
cross-linked by 1,4 BDC linkers, which has demonstrated
attractive gas adsorption properties owing to its guest-induced
breathing behavior.54−60 The thiophene analogue MIL-53(Al)-
TDC (TDC = 2,5-thiophenedicarboxylate) first reported by
Stock and co-workers in 201761 has been investigated for heat
transformation applications,62 capture of hazardous gases
(CO2 and H2S),

63 and very recently, I2 detection.64 Thus,
we anticipated MIL-53(Al)-TDC to behave as a rigid structure
upon SO2 adsorption, as previously demonstrated for other
probe molecules, for example, CO2, H2S, N2, CH4, H2O, and
EtOH,61−64 exhibiting potentially attractive SO2 uptake
performance compared to other representative MOF materials
such as MIL-101(Cr)−4F(1%),49 MIL-160,44 MFM-300-
(Al),51 and CAU-10.52 Additionally, we hypothesized that
MIL-53(Al)-BDC should also show promising SO2 uptake
performance, however, associated with a flexible adsorption-
induced structural behavior upon the whole adsorption
process, which is of fundamental interest for further
applications. Herein, we report the SO2 adsorption properties
of these two Al(III)-based MOFs, MIL-53(Al)-TDC and MIL-
53(Al)-BDC (see Scheme 1). Our hybrid experimental−
computational approach demonstrated a rigid-like behavior of
MIL-53(Al)-TDC upon adsorption, although a spectacular
multistep adsorption was evidenced for MIL-53(Al)-BDC, and

this was assigned to three subsequent structural transitions
between narrow, intermediate, and large pore forms.
Interestingly these two Al-MOFs were shown to be highly
stable upon SO2 adsorption even under wet conditions (60%
RH) while maintaining a high level of capture performance
upon cycling.

2. RESULTS AND DISCUSSION
2.1. Synthesis and Characterization. According to the

literature,61 MIL-53(Al)-TDC was synthetized by the hydro-
thermal reaction between H2TDC and AlCl3 (1:1.3 ratio,
respectively) in a DMF/H2O mixture at 100 °C during 5 h
(see Supporting Information). Similarly, the hydrothermal
reaction of a mixture of H2BDC and Al(NO3)3 9H2O (1:2
ratio, respectively) heated up to 220 °C for 72 h produced a
highly crystalline phase of the as-MIL-53(Al)-BDC (see
Supporting Information).65 Both the as-synthetized materials
yielded microcrystalline solids. Prior to SO2 adsorption
experiments, the MIL-53(Al)-TDC acetone-exchanged sample
was activated at 200 °C under vacuum for 4 h (see Supporting
Information). A hydrated-MIL-53(Al)-BDC sample (initially
calcined at 230 °C for 3 days in order to remove all the
unreacted H2BDC; see Supporting Information) was activated
by heating up to 220 °C under vacuum for 6 h. Both activated
MIL-53(Al)-BDC and MIL-53(Al)-TDC materials resulted in
white microcrystal powders. Their corresponding powder X-
ray diffraction (PXRD) patterns (Figures S1 and S2,
respectively) correspond to those reported previously by
Loiseau et al.53 and Stock et al.,61 respectively. The N2
adsorption experiments revealed BET areas of 1210 and
1260 m2 g−1 and pore volumes of 0.51 and 0.45 cm3 g−1 for the
activated MIL-53(Al)-BDC and MIL-53(Al)-TDC (Figures S3
and S4, respectively), in agreement with previous findings.61,65

2.2. SO2 Adsorption in MIL-53(Al)-TDC. Figure 1 shows
the SO2 adsorption−desorption isotherms for MIL-53(Al)-
TDC at 298 K and up to 1 bar. One observes that the
adsorption branch exhibits the standard type-I profile for a
microporous solid without the presence of steps or inflections
points at 298 K (Figure S5). This suggests that this material
does not undergo any substantial structural changes upon SO2
adsorption in the range of temperatures explored. From 0 to

Scheme 1. Organic Ligands Used in Both (a) MIL-53(Al)-
TDC and (b) MIL-53(Al)-BDC Materials: TDC and BDC,
Respectivelya

aView along the b-axis of rhombohedral-shape pores in the MIL-
53(Al) topology, pink octahedral: AlO4(μ-OH)2; red: oxygen; black:
carbon, and sulfur yellow.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.1c09944
ACS Appl. Mater. Interfaces 2021, 13, 39363−39370

39364

https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c09944/suppl_file/am1c09944_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.1c09944?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c09944?fig=sch1&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c09944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


0.05 bar, the SO2 capacity sharply increases up to 4.7 mmol
g−1, an uptake similar to that reported previously for MFM-
300(In) and MFM-601(Zr) at similar pressure (5.9 and ∼4.0
mmol g−1).66,67 This is followed by a less-steep increase from
0.05 to 0.2 bar (7.1 mmol g−1) and a further gradual increment
from 0.2 to 1.0 bar to reach a maximum uptake of 8.9 mmol
g−1 (Figure 1).
The resulting SO2 saturation capacity is higher than those

previously reported for representative MOF materials showing
similar pore volume including MIL-160,44 MFM-300(Al,
In),51,66 Mg-MOF-74,47 and M-(BDC)(ted)0.5 (M = Ni,
Zn)68 (7.2, 8.3, 8.1, and 2.5 mmol g−1, respectively) among
others (see Table S1). Interestingly, the adsorption and
desorption branches coincide, the absence of hysteresis
suggesting a full reversibility of the SO2 capture.
The SO2 experimental adsorption isotherm was fairly

reproduced by GCMC simulations considering a rigid-like
framework for MIL-53(Al)-TDC (Figure 1). The low-pressure

regime below 0.2 bar was well captured by our simulations,
while the saturation uptake (9.90 mmol g−1) was predicted to
be slightly higher than the experimental one. In particular, the
sudden increase of SO2 uptake below 0.05 bar is attributed to a
relatively high SO2/MIL-53(Al)-TDC affinity with an
associated simulated adsorption enthalpy at low coverage
(−41.0 kJ mol−1) in good agreement with the experimentally
determined isosteric adsorption enthalpy of −45.6 kJ mol−1

(see Supporting Information, Figures S10 and S11).
To gain further insights into the microscopic adsorption

behavior of SO2, MC simulations were carried out in the
canonical ensemble for different SO2 loadings. At the initial
stage of adsorption, SO2 was found to interact via its O-atoms
with the H-atom of the μ-OH group of MIL-53(Al)-TDC with
a mean separating distance of 2.05 Å, as defined by the radial
distribution function (RDF) plotted for the corresponding
atom pair in Figure S22. Such scenario that remains valid at
higher SO2 loading corresponds to relatively strong host/guest
interactions, which is reminiscent with what we already
reported for SO2 in other MOFs containing hydroxyl
groups.69,70 In addition, the SO2 molecules establish additional
weaker interactions with the aromatic rings through their
oxygen atoms, with mean separating distances of about 3.5 Å.
At higher loading, the SO2 molecules interact with each other
with a mean separating distance of about 3.34 Å (Figure S22).
An illustration of these interactions and the resulting
arrangements of the SO2 molecules is provided in Figure
2a−c at low, intermediate, and saturation loadings, respec-
tively.
We further investigated the regeneration ability of MIL-

53(Al)-TDC by performing cycling experiments by only
applying vacuum (1.7 × 10−6 Torr for 30 min) at 298 K.
This material was shown to exhibit a very good SO2 cyclability
with an adsorption capacity preserved after 50 adsorption−
desorption cycles, as illustrated in Figure S12. The PXRD
pattern of the sample after these adsorption−desorption
cycling experiments showed that the integrity of the structure
is overall maintained, however, associated with a small loss of
crystallinity, as suggested by a moderate broadening of the
Bragg peaks (Figure S14). This demonstrates the high stability
of MIL-53(Al)-TDC upon exposure to SO2. We further

Figure 1. Experimental SO2 adsorption−desorption isotherms
collected for a fully activated MIL-53(Al)-TDC sample (filled blue
circles = adsorption; open blue circles = desorption) at 298 K and up
to 1 bar. The inset shows the comparison between the experimental
(filled blue circles) and the grand canonical Monte Carlo (GCMC)
simulated (open red rhombus) SO2 adsorption isotherms.

Figure 2. Illustrative snapshots of SO2 in the pores of MIL-53(Al)-TDC issued from MC simulations for (a) 1.1 mmol g−1 (low loading), (b) 5.0
mmol g−1 (intermediate loading), and (c) 9.1 mmol g−1 (high loading). Color codes: Al, pink; O, red; S, yellow; C, gray; and H, white. The main
interactions are reported as dashed lines, that is, OSO2

−Hμ‑OH (blue), OSO2
−Corg (red), and SSO2

−OSO2
(green). The distances are expressed in

angstrom.
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exposed MIL-53(Al)-TDC to wet SO2 during 24 h using a
home-designed setup (Figure S18). The PXRD pattern
collected for this sample revealed a retention of the initial
crystal structure with a small loss of the crystallinity (Figure
S16). This makes MIL-53(Al)-TDC among the few very
MOFs stable under this harsh operating condition.39−41

2.3. SO2 Adsorption in MIL-53(Al)-BDC. Figure 3 reports
the SO2 adsorption−desorption isotherms for MIL-53(Al)-

BDC at 298 K and up to 1 bar. In sharp contrast with MIL-
53(Al)-TDC, the benzene dicarboxylate analogue does not
exhibit the standard type-I adsorption isotherm but a step-wise
profile (Figures 3 and S6). This behavior is reminiscent to that
previously reported for the same solid upon adsorption of
various gases/vapors and ascribed to guest-induced structural
changes of the framework.54−60 Herein, two consecutive steps
were first observed from 0 to 0.04 bar and from 0.04 to 0.09
bar with corresponding SO2 uptakes of ∼0.6 and ∼0.9 mmol
g−1, respectively. This is followed by a third one from 0.09 to
0.21 bar associated with a sharp increase of the SO2 uptake,
leading to 6.2 mmol g−1 at the plateau. Finally, a last step is

observed from 0.31 to 0.36 bar with a resulting SO2 uptake of
∼8.2 mmol g−1 that further gradually increases with pressure
until to reach 10.8 mmol g−1 at 1 bar (Figure 3). We further
observe that the desorption branch shows a large hysteresis,
with a complete reversibility upon once reducing the SO2
pressure, which is associated with the flexibility of MIL-53(Al)-
BDC.
This total SO2 uptake is comparable to other representative

MOF materials with relatively larger BET areas and similar
pore volume: Mg-MOF-74 (8.6 mmol g−1);47 M(bdc)(ted)0.5
(M = Zn 3.0 and Ni 9.9 mmol g−1, respectively);68 M-MFM-
300 (M = Al 8.1, In 8.3 and Sc 9.4 mmol g−1,
respectively);51,66,71 MFM-202a (10.2 mmol g−1);46 MFM-
601 (12.3 mmol g−1);67 and SIFSIX-1-Cu (11.0 mmol g−1)72

(see Supporting Information, Table S1).
Interestingly, this multiple-step adsorption behavior of MIL-

53(Al)-BDC deviates with the standard two-step isotherms
exhibited by MIL-53(Al or Cr)-BDC55,73−77 for a wide range
of guest molecules including CO2 in MIL-53(Al or Cr)-
BDC55,73−77 at both room and low temperatures, as also
confirmed by our own experimental data collected at 298 and
196 K (see Figure S20).
To gain insights into this uncommon guest-induced

breathing behavior for MIL-53(Al)-BDC, GCMC-simulated
SO2 adsorption isotherms were derived individually for the
narrow pore (np) and large pore (lp) forms using the crystal
structures preliminarily fully optimized (atomic positions and
cell parameters) at the density functional theory (DFT) level
in their SO2 loaded forms with 1 and 10.8 mmol g−1,
respectively, corresponding to the experimental uptakes at low
and high pressure (see Supporting Information). Table S7
reports their corresponding DFT-optimized cell parameters.
Figure 3 inset shows that the initial stage of adsorption up to
0.1 bar can be well captured by the consideration of the np
form, while the lp form allows a good description of the
experimental adsorption isotherm at higher pressure above 0.4
bar. An intermediate phase (ip) was further constructed by a
fully DFT-optimized lp form preliminarily loaded with 6 mmol
g−1 of SO2 corresponding to the experimental adsorption
uptake at the plateau at 0.3 bar (see Supporting Information
for details and Table S7 for the corresponding cell parameters).
Figure 3 inset shows that the GCMC-simulated adsorption
isotherm for this ip phase well captures the experimental
amount adsorbed in the pressure range 0.21−0.3 bar,
supporting the existence of a guest-induced intermediate
phase in this domain of pressure. The unconventional SO2

Figure 3. Experimental SO2 adsorption−desorption isotherms
collected for a fully activated MIL-53(Al)-BDC sample (filled blue
circles = adsorption; open blue circles = desorption) at 298 K and up
to 1 bar. The inset shows the comparison between the experimental
SO2 adsorption isotherm (filled blue circles) and the corresponding
GCMC simulated SO2 data (np form: open red rhombus; ip form:
open red circles; and lp form: open red squares).

Figure 4. Illustrative snapshots of SO2 in the pores of MIL-53(Al)-BDC generated from MC simulations for (a) np form (1 mmol g−1), (b) ip form
(6 mmol g−1), and (c) lp form (9.8 mmol g−1). Color codes: Al, pink; O, red; S, yellow; C, gray; and H, white. The main interactions are reported
as dashed lines, that is, OSO2

−Hμ‑OH (blue), OSO2
−Corg (red), and SSO2

−OSO2
(green); distances are expressed in angstrom.
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adsorption isotherm can be thus regarded as a composite
isotherm resulting from the contribution of three distinct
phases. The existence of three guest-triggered structural
changes lp−np, np−ip, and ip−lp during the whole adsorption
process is unprecedented for MIL-53(Al, Cr)-BDC, while it is
reminiscent to previous findings reported for the initially
closed structure of the Fe-analogue upon adsorption of ethane,
propane, and butane.75

Monte Carlo simulations in the canonical ensemble were
further carried out for the np, ip, and lp structures loaded with
their respective simulated saturation uptakes. These calcu-
lations revealed strong interactions between SO2 molecules via
their O-atoms and the H-atom of the μ-OH group in the np
phase with a mean separating distance of 1.78 Å (see
corresponding RDF plots in Figure S23) significantly shorter
than in MIL-53(Al)-TDC (2.05 Å, Figure S22) as illustrated in
Figure 4a. This trend is consistent with a higher simulated
adsorption enthalpy at low coverage (−50.6 kJ mol−1) versus its
thiophene analogue (−41.0 kJ mol−1), also confirmed by the
experimental isosteric enthalpy of adsorption at low coverage
(−52.6 kJ mol−1, see Figures S10 and S11). The SO2/μ-OH
interactions remain predominant in the ip and lp phases,
although associated with slightly longer distances (Figure S23).
Additional interactions also occur between SO2 and the
organic linker, as shown in Figure 4b,c. The pore size
distributions calculated for all these structures show the
following sequence: MIL-53(Al)-TDC > MIL-53(Al)-BDC-lp
> MIL-53(Al)-BDC-ip > MIL-53(Al)-BDC-np (7.20, 7.10,
4.80, and 2.80 Å, respectively) (see Figure S24). Indeed, the
more confined pores of MIL-53(Al)-BDC-np enable stronger
interactions between SO2 and μ-OH (shorter separating
distances) as compared to the scenario encountered for the
larger pores of MIL-53(Al)-TDC and MIL-53(Al)-BDC-lp, in
line with the trend obtained for both experimental and
simulated adsorption enthalpy. Since MIL-53(Al)-BDC-ip
exhibits an intermediate pore size, the interacting distances
between SO2 and μ-OH are in-between those observed for
MIL-53(Al)-BDC-np and MIL-53(Al)-BDC-lp.
Continuing with the SO2 adsorption properties, MIL-

53(Al)-BDC was demonstrated to exhibit a similar SO2
cyclability to MIL-53(Al)-TDC, with the SO2 capture capacity
remaining constant even after 50 adsorption−desorption cycles
(Figure S13). Analysis of the PXRD patterns after cycling
experiments exhibited that the integrity of the structure is
overall maintained, however, associated with a small loss of the
crystallinity, as suggested by a moderate broadening of the
Bragg peaks for lp-MIL-53(Al)-BDC (Figure S15). Sub-
sequently, an activated sample of lp-MIL-53(Al)-BDC (vide
supra) was exposed during 24 h to wet SO2, and analysis of the
PXRD patterns showed that the sample after being exposed to
wet SO2 also retained its crystal structure with a small loss of
the crystallinity (Figure S17).
When comparing the SO2 adsorption isotherms of both

rigid-like MIL-53(Al)-TDC and flexible MIL-53(Al)-BDC
materials (Figure S7), we can observe that (i) at low pressure
from 0 to 0.05 bar, MIL-53(Al)-TDC shows a much sharper
increase of SO2 uptake (4.7 mmol g−1 vs 0.6 mmol g−1 for
MIL-53(Al)-BDC). According to Eddaoudi and co-workers78

who developed a chemical SO2 sensor using MFM-300(In),66

MOF structures must meet some general requirements to be
applied in the design of SO2 sensor devices, such as high
stability to SO2 at room temperature, high capture at low
pressure, high affinity, and low reactivation energy.78−80 In this

context, MIL-53(Al)-TDC might be an alternative candidate
for SO2 sensing.
(ii) At higher pressure, both materials show relatively high

SO2 uptakes combined with outstanding cyclability, keeping
their SO2 capture close to the maximum by only applying
vacuum to be reactivated. As it was established by Morris and
Wheatley,81 porous solids are becoming a significant
technology in gas storage and transportation and two
important factors which are considered for their use, that is,
a high capture at no-cryogenic conditions and more
importantly, soft delivery conditions. Thereby, MIL-53(Al)-
TDC and MIL-53(Al)-BDC might be potential candidates for
SO2 storage and transportation, which are two application
imperatives in fields such as the food industry, fumigation, and
petroleum refineries.

3. CONCLUSIONS
To summarize, the SO2 adsorption properties of two Al(III)-
based MOF materials (MIL-53(Al)-TDC and MIL-53(Al)-
BDC) were comprehensively explored. MIL-53(Al)-TDC was
demonstrated to act as a rigid-like material upon SO2
adsorption. Conversely, MIL-53(Al)-BDC was shown to
exhibit a spectacular guest-induced flexibility of the framework
with the presence of multiple steps in the SO2 adsorption
isotherm that was attributed to the subsequent existence of
three different np, ip, and lp phases along the SO2 pressure, as
revealed by molecular simulations. Furthermore, MIL-53(Al)-
TDC and MIL-53(Al)-BDC have been demonstrated to be
exceptional candidates for the capture of SO2, even under
humid conditions, with excellent SO2 uptake, very good
cyclability, remarkable chemical stability, and easy regener-
ation. Interestingly, the SO2-induced flexible behavior of MIL-
53(Al)-BDC might open new application avenues such as the
SO2 selective sensing as well as SO2 gas storage and
transportation.
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