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ABSTRACT

The typical two-dimensional semiconductors, group IIIA chalcogenides, have garnered tremendous interest for their outstanding electronic,
mechanical, and chemical properties. However, so far, there have been rare reports on boron monosulfides (BS) binary material. Here, four
two-dimensional BS sheets, namely, the a-, b-, c-, and d-BS sheets, are proposed and discussed from first principles calculations. State-of-
the-art calculations reveal all these structures are thermally and dynamically stable, indicating the potential for experimental synthesis.
Specifically, for a-BS, it has a calculated exfoliation energy of 0.96 J m�2, suggesting that the preparation of a-BS is feasible by the exfoliation
of bulk rhombohedral-BS. Our results show that a-, b-, and c-BS are semiconductors, whereas d-BS is a metallic system. Remarkably, our
calculations indicate that d-BS is a superconductor with a large electron-phonon coupling (k � 1.51), leading to a high superconducting
critical temperature (Tc � 21.56K), which is the interesting property with intrinsic superconducting among all two-dimensional group IIIA
chalcogenides. The potential of semiconducting BS monolayers as the gas-sensor or thermoelectric materials is also demonstrated.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006059

The family of two-dimensional (2D) crystals, 2D group IIIA chal-
cogenides, are promising materials for photoelectronics,1 gas sensing,2

and Li-ion battery anodes.3 Until now, various layered group IIIA
chalcogenides, i.e., GaS,1 GaSe,4 GaTe,5,6 and InSe,7 have been synthe-
sized experimentally. Following by these achievements, great endeav-
ors have also been made to investigate the intriguing physical and
chemical properties of these materials for potential applications in
many fields.1,2 In fact, the bulk boron–sulfur binary material is also a
light-element member of group IIIA chalcogenides family.
Experimentally, boron-sulfur binary compounds have been known
since 1977,8,9 and its monosulfide structure was reported in 2001,10

namely, bulk rhombohedral boron monosulfide (r-BS). However,
unlike other common group IIIA chalcogenide semiconductors, little
research has been done toward preparation of the 2D binary BS com-
pounds due to the lack of knowledge of their physical properties.11,12

To date, only few structural and electronic properties of bulk
binary BS compounds have been reported, showing that the bulk r-
BS is a semiconductor with an estimated bandgap of 3.4 eV.10,11

However, little research has been done toward the preparation of
2D binary BS compounds due to the lack of knowledge of their
physical properties.

In this Letter, we present four BS monolayers, namely, a-, b-, c-,
and d-BS, predicted via combined first principles calculations and
structure search method. Both dynamical and thermal stabilities of
these sheets are investigated by phonon spectrum calculation and
abinitiomolecular dynamics (AIMD) simulation. The electronic struc-
ture calculations show that a-, b-, and c-BS are semiconductors
with the bandgaps of 4.03, 3.89, and 2.94 eV, respectively, whereas d-
BS is a metallic sheet. Quantum transport simulations show the high
molecular sensitivity of the hypothetical chemical sensing device based
on a- and b-BS monolayers. More importantly, electron–phonon cou-
pling calculations show that d-BS is superconducting with a high
superconducting critical temperature (Tc) of 21.56K.

The search of stable BS systems is performed by using the
CALYPSO package.13–15 All the calculations were carried out with the
Vienna Abinitio Simulation Package.16 The density functional theory
(DFT) with the generalized gradient approximation (GGA) of Perdew–
Burke–Ernzerhof (PBE) functional was employed.17,18 Quantum-
ESPRESSO 6.1 package19 is used to study the electron–phonon
coupling (EPC) in d-BS. Quantum transport simulations were
performed by using the density functional theory and nonequilibrium
Green’s function (NEGF) method as implemented in the
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QuantumATK package.20 More details on computational methods can
be found in the supplementary material.

Optimized structures of all predicated BS sheets are shown in
Fig. 1, and the calculated lattice parameters are summarized in Table
S1. We identify four different phases, denoted by a-, b-, c-, and d-BS,
as shown in Figs. 1(a)–1(d), respectively. Evidently, a- and b-BS sheets
share similar structural features with the experimentally fabricated 2D
hexagonal GaS and GaSe.21,22 They adopt the hexagonal lattices with
two B and two S atoms in each unit cell. The optimized lattice con-
stants for a- and b-BS are a¼ b¼ 3.06 Å and a¼ b¼ 3.04 Å, with
space group P-3m1 and P-6m2, respectively. Also, the obtained results
for b-BS are in good agreement with the previous theoretical work.11

Figure S1 presents the energy profile relative to the a-BS. Obviously,
a-BS is energetically more stable than the b-BS (12.50meV per for-
mula) with an energy barrier of 0.47 eV per formula.

Interestingly, the hitherto unknown configurations, c- and d-BS,
crystallize in the monoclinic and orthorhombic lattice with space
group C2=m and Pmma, showing the C2h and D2h symmetry, respec-
tively. As shown in Figs. 1(c) and 1(d), one unit cell of c-BS (d-BS)
monolayer consists of 4 (2) B atoms and 4 (2) S atoms with the opti-
mized lattice parameters being a¼ 7.38 (3.07) Å and b¼ 3.06 (2.59)
Å, respectively. For d-BS, S-B bonds play an important role and each S
atom is bonded to two adjacent B atoms along the a direction. Along
the b direction, S atoms line both sides of the zigzag B chains.

To examine the relative stability of these different allotropes, the
cohesive energy (Ec) per atom with respect to the energy of isolated B
and S atoms is calculated as defined by Ecoh ¼ (nEB þ mES – EBS)/
ðnþmÞ, in which EB, ES, and EBS are the calculated total energies of a
single B atom, a single S atom, and the BS sheet, respectively; n (m) is
the number of B(S) atoms in the unit cell. According to our calcula-
tions, these monolayers have the cohesive energies of 5.23, 5.22, 5.11,
and 4.92 eV per atom for a-, b-, c-, and d-BS, respectively. Thus, a-BS
is the energetically most stable phase, while b-, c-, and d-BS are the
metastable phases. As a reference, the cohesive energies of the experi-
mentally realized 2D silicene and phosphorene are 3.71 and 3.61 eV
per atom, respectively.23 Therefore, the even higher cohesive energies

can ensure that the proposed monolayers are strongly bonded with the
unique chemical bonding.

The dynamical stability of these monolayers can be further
checked by phonon dispersion curves as shown in Figs. 1(e) and 1(f).
No imaginary phonon frequencies were observed in the whole
Brillioun zone, suggesting their dynamical stability. The highest fre-
quency of c-BS reaches up to 1073 cm�1, higher than that of 473 cm�1

in MoS2,
24 t-SiC (735 cm�1,25 and silicene (580 cm�1,26 indicating the

strong B–S and B–B bonds in the structures. Additionally, their ther-
mal stability is also confirmed by performing the AIMD simulations,
as shown in Figs. S2 and S3. Therefore, the above-mentioned results
demonstrate that all these monolayers have satisfactory energetic,
dynamical, and thermal stability. Conventionally, for a mechanically
stable 2D free-standing configuration, the calculated elastic constants
should satisfy C11C22 � C12C21 > 0 and C66 > 0.27,28 As listed in
Table S1, all the calculated elastic constants of the proposed structures
satisfy the criteria, indicating that these 2D compounds have favorable
mechanical stability. Simultaneously, the in-plane Young’s modulus
(or in-plane stiffness) is calculated to be 212GPa � nm for b-BS, which
is distinctly higher than that of experimentally synthesized 2D GaS
(73GPa � nm) and silicene (61GPa � nm).11,29 However, for c- and
d-BS sheets, as elastic constant C11 is not equal to C22, they are
mechanically anisotropic.

The desirable mechanical properties are indispensable for appli-
cations in the real world. Besides in-plane Young’s modulus, ideal
strength is also an important mechanical property for 2D material.30

The ideal tensile stress vs strain for the BS sheets is shown in Fig. S4.
With small strains deformations, the sheets exhibit linear stress-strain
relationship (with distinguished elastic anisotropy for c- and d-BS).
As the applied strain increases, their stress-strain behaviors become
nonlinear and show difference, changing trends along the x and y
directions. Particularly, for a- and b-BS, along the y direction, both the
peak strengths and the corresponding critical strains are higher than
along the x direction, while the opposite trends occurred in c- and
d-BS sheets. a-BS can sustain stress up to 13N m�1 and 18N m�1 in
the x and y directions, respectively. The corresponding critical trains
are 0.1 (x) and 0.22 (y). The ideal strengths for the b-BS are 16N m�1

and 20N m�1 in the x and y directions, respectively, and their
critical strains are 0.12 (x) and 0.24 (y). For d-BS, its peak strength is
25N m�1 at ex ¼ 0.34 and 6N m�1 at ey ¼ 0.06, respectively. Thus,
the ideal strengths of BS sheets are significantly higher than other 2D
materials, such as borophene, MoS2, and phosphorene.

30

The computed HSE06 band structures of the proposed sheets are
shown in Fig. 2. For a- and b-BS, clearly, they are indirect bandgap
semiconductors: the conduction band minimum (CBM) is at the M
point, while the valence band maximum (VBM) lies between the C
and K points, which is only slightly higher in energy than at the C
point (6.6meV for a-BS and 16.2meV for b-BS at HSE06 level).
However, for c-BS, both CBM and VBM are located at the C point,
generating a direct bandgap of 2.94 eV. For those three semiconduc-
tors, their band structures show strong anisotropy of the conduction
band, which finally leads to the anisotropy of the effective masses as
shown in Fig. S5.

Interestingly, the top valence bands of a- and b-BS sheets are
nearly flat near around the C point, leading to the Mexican-hat
shape of valence band edges, which render sharp peaks in the
DOS and strong van Hove singularities near the Fermi level.31–33

FIG. 1. Top (upper) and side (lower) views of the optimized geometric structure of
(a) a-, (b) b-, c-, and d-BS. a and b represent the lattice vectors; the unit cell is indi-
cated by dashed lines. Computed phonon spectrum of of (e) a-, (f) b-, (g) c-, and
(h) d-BS.
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The Mexican-hat shape valence bands are mostly contributed by the
2p and 2p orbitals of B and S atoms, respectively, and these orbitals are
strongly overlapping in the full energy range, suggesting covalent
bonding characters of B–S bonds (see Fig. S6). The covalent features in
the proposed 2D materials are also demonstrated by the analysis of the
electron localization functions (ELFs) as shown in Fig. S7. Obviously,
ELFs show two localization areas: one is located around the B–S bonds
and the other is between B–B bonds, reflecting the valence electrons
are shared between the adjacent atoms.

To evaluate the performance of monolayer BS as a gas sensor, we
calculated the I � V characteristics before and after the typical molecular
adsorption, using the NEGF formalism coupled with the density func-
tional theory calculations. For the cost of computation, we only consider
two energy-favorable structures: a- and b-BS. Quantum transport calcu-
lations were carried out for a- and b-BS with somemolecular adsorption,
including H2O, CO2, and NH3. The most stable adsorbed configurations
for the adsorption of different gas molecules on a- and b-BS sheets are
considered. The simulated I � V curves are shown in Fig. 3.

One can see that the current changes significantly upon adsorp-
tion of the NH3 and H2O molecule, in both a- and b-BS, suggesting
the high sensitivity of this sensing device. Relative to the CO2 adsorp-
tion, we found that the sensitivity of a-BS toward H2O adsorption
decreases by 51% when the applied bias voltage is 1.0V. Thus, the
transport features of a- and b-BS monolayers exhibit apparent
responses with the striking change of I � V relationship before and
after H2O or NH3 adsorption.

One of the promising avenues to tune the electronic property of
2D materials is strain engineering. The bandgaps of a-, b-, and c-BS

structures with respect to the uniaxial stress are shown in Fig. 4(a).
Approximately, the bandgaps of the a- and b-BS monolayers decrease
gradually with either tensile or compressive strains, showing a nonmo-
notonic relationship. This unusual behavior is attributed to Mexican-
hat shape valence bands near the Fermi level, akin to the InP3
monolayer.31 Their outstanding properties with heavy effective masses
and wide bandgaps render these materials suitable candidates for
future applications in ultrashort (i.e., sub-5 nm regime) channel logical
devices.33,35

Additionally, the metallic property of d-BS inspires us to investi-
gate its potential superconducting property. Figure 4(b) shows the
Eliashberg spectral function a2F(x) together with the integrated EPC
parameter k(x) at the PBE level. a2F(x) exhibits a strong peak around
5THz, and k(x) increases sharply in the range of 0–7THz. As
expected, the main contributor to the EPC is derived from the vibra-
tion of the heavy S atoms. The resulting coupling strength of k � 1.51
is rather strong. Superconducting transition temperature (Tc) of d-BS
is estimated through the Allen–Dynes modified McMillan formula
equation,36

Tc ¼
xlog

1:2
exp � 1:04 1þ k½ �

k� l� 1þ 0:62k½ �

 !
; (1)

by using the calculated logarithmic average frequency (xlog) and a
series of Coulomb pseudopotential parameters (l�) from 0.10 to 0.13
as shown in Table S2. At l� ¼ 0.10, the highest Tc value of d-BS is
21.56K, originating from its strong EPC and high logarithmic average
frequency (xlog ¼ 189.06K). Thus, the evaluated Tc is in the range of
21.56K (l� ¼ 0.10) to 19.08K (l� ¼ 0.13), indicating that the d-BS is

FIG. 3. (a) A schematic illustration of a- and b-BS-based sensor for detecting gas
molecule. In order to avoid the tunneling effect, the length of the central region was
set to 4 nm. (b) The simulated I � V characteristics before and after the adsorption
of gas molecule on a- (left) and b-BS (right) monolayers.

FIG. 2. Electronic band structures for (a) a- (left), b- (right), (b) c- (left), and d-BS
(right) at HSE06 level. The Fermi energy level is set to zero. The corresponding
high symmetry points in the first Brillouin-Zone and the effective electron and hole
masses (GGA-PBE) are also inserted.
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an intrinsic Bardeen–Cooper–Schrieffer (BCS) type superconductor.
Notably, this Tc is higher than that of other previously reported 2D
superconductors, such as borophenes (� 10–20K) and boron carbides
(� 21.20K).37,38

The most common techniques to prepare 2D materials from
their bulk counterparts are mechanical or liquid phase exfoliation.39,40

Here, to explore the possibility of fabricating the energetically
favorable a-BS from the surface of its layered bulk r-BS crystal (see
Fig. S7),10,41 we then simulated the exfoliation process and calculated
exfoliation energy with respect to separation, as shown in Fig. 4(c). We
first test the computing method using graphite as a benchmark and
the calculated exfoliation energy for graphene is 0.30 J m�2, which is
consistent with the previous experimental (0.326 0.03 J m�2)42 and
theoretical value (0.31 J m�2).31 For a-BS, the calculated exfoliation
energy is 0.96 J m�2, which is higher than that of graphene, but
still less than some layered materials, i.e., InP3 (1.32 J m�2,31 Ca2N
(1.08 J m�2,43 and GeP3 (1.14 J m

�2,44 indicating the a-BS sheet could
be prepared experimentally from its bulk counterpart. Therefore, the
moderate vdW interactions of a-BS suggest the preparation of mono-
or few-layer a-BS heterostructures is feasible.45

In summary, we have reported four 2D BS binary sheets with
high stability, high mechanical strength, and unique electronic proper-
ties. Importantly, d-BS phase is identified as the discovery of intrinsic
superconducting material among all 2D group IIIA chalcogenides. All
monolayers show good dynamical and thermal stability, and a-BS is
expected to be prepared from its layered bulk r-BS by exfoliation. The
quantum transport features or a- and b-BS monolayers exhibit distinct
responses with a change of I � V relationship before and after H2O
(NH3) adsorption. Therefore, we predict that a- and b-BS monolayers
could be promising candidates for the gas sensor with high sensitivity.
These advantaged features promote 2D BS sheets as promising candi-
dates for future applications in future nano-devices. We also believe
our results will further stimulate the experimental preparation and
investigation of 2D BS materials.

See the supplementary material for computational details, lattice
parameters, electron–phonon coupling parameter, fluctuations of the
total energy, band structures at GGA-PBE level, partial density of
states, and location function of a-, b-, c-, and d-BS monolayers.
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